Formtracer

- FORMTRACER Avant S3000 Series are highly functional and user-friendly surface roughness measuring systems with innovative design features.
- The FORMTRACER Avant S3000 Series includes models with inclined drive unit. Inclining the drive unit makes it easier to approach target surfaces and measure large workpieces.
- Equipped with an operability focused, new style remote box. The new part program

Inclined drive unit key strongly supports manual part-programming.

- High throughput is achieved thanks to high drive speed (X axis: Max. $80 \mathrm{~mm} / \mathrm{s}, \mathrm{Z2}$ axis: Max. $30 \mathrm{~mm} / \mathrm{s}$) and acceleration (X axis: 30 $\mathrm{mm} / \mathrm{s}^{2}$).
- All connecting cables are contained within the measuring instrument to eliminate any inconvenience during measurement.
- The Z1-axis detector is equipped with a built-in anti-collision safety device.
- A variety of detector holders (optional) are available.
- A detector for measuring contours can be retrofitted.

Refer to the FORMTRACER Avant Series Brochure (E15030) for more details.

SPECIFICATIONS

Detector holder (optional)

Large sized base models and high-column models are added to the line-up.

Model No.		FTA-S4S3000	FTA-H4S3000	FTA-W4S3000	FTA-L4S3000	FTA-S8S3000	FTA-H8S3000	FTA-W8S3000	FTA-L8S3000
Measuring range	X axis	100 mm				200 mm			
	Z1 axis	$800 \mu \mathrm{~m}, 80 \mu \mathrm{~m}, 8 \mu \mathrm{~m}$							
Straightness (when the X axis is horizontal)		$(0.05+0.001 \mathrm{~L}) \mu \mathrm{m} \mathrm{L}=$ Measurement Length (mm)				(0.1+0.002L) $\mu \mathrm{m} \quad \mathrm{L}=$ Measurement Length (mm)			
X-axis inclination angle		$\pm 45^{\circ}$ (Only for models with X-axis inclining drive unit)							
Z2-axis (column) travel range		300 mm	500 mm		700 mm	300 mm	500 mm		700 mm
Base size (W×D)		$60 \times 450 \mathrm{~mm}$		$1000 \times 450 \mathrm{~mm}$		$600 \times 450 \mathrm{~mm}$		$1000 \times 450 \mathrm{~mm}$	
Base material		Granite							

Note: While the appearance of the natural stone measuring table varies according to the source, the high stability for which this material is known can always be relied upon.

MeasurLink ${ }^{\circ}$ ENABLED Data Management Software by Mitutoyo

- FORMTRACER Avant C3000/4000 Series are highly functional and user-friendly contour measuring systems with innovative design features.
- FORMTRACER Avant C3000/4000 Series comes with the inclined drive unit as standard, making approach to the target surface and measurement of large workpieces much easier.
- Equipped with an operability focused, new
 style remote box. The new part program key strongly supports manual part-programming. - High throughput is achieved thanks to high drive speed (X axis: Max. $80 \mathrm{~mm} / \mathrm{s}, \mathrm{Z2}$ axis: Max. $30 \mathrm{~mm} / \mathrm{s}$) and acceleration (X axis: $30 \mathrm{~mm} / \mathrm{s}^{2}$).
- All connecting cables are contained within the measuring instrument to eliminate any inconvenience during measurement.
- The Z1-axis detector is equipped with a built-in anti-collision safety device.
- A detector for measuring roughness can be retrofitted.
- The arm of the detector is a user-friendly, magnetic, one-touch, detachable mechanism.
- C4000 type is a highly functional contour measuring system that has a wide-range digital detector (measuring range: 60 mm), top/ bottom plane continuous measurement function, automatic variable
 measuring force function, and stylus drop detection function.

Refer to the FORMTRACER Avant Series Brochure (E15030) for more details.
SPECIFICATIONS

FORMTRACER Avant C3000/4000 Series SERIES 218 - Surface Texture Measuring Instruments

Large sized base models and high-column models are added to the line-up.

Remote box with user-friendly operability

Detector

Model No.			FTA-S4C3000	FTA-H4C3000	FTA-W4C3000	FTA-L4C3000	FTA-S8C3000	FTA-H8C3000	FTA-W8C3000	FTA-L8C3000
			FTA-S4C4000	FTA-H4C4000	FTA-W4C4000	FTA-L4C4000	FTA-S8C4000	FTA-H8C4000	FTA-W8C4000	FTA-L8C4000
Measuring range		X axis	100 mm				200 mm			
		Z1 axis	60 mm ($\pm 30 \mathrm{~mm}$ in horizontal situation)							
Straightness (when the X axis is horizontal)			$0.8 \mu \mathrm{~m} / 100 \mathrm{~mm}$				$2 \mu \mathrm{~m} / 200 \mathrm{~mm}$			
Accuracy ($20{ }^{\circ} \mathrm{C}$)	C3000	X axis	$(0.8+0.01 \mathrm{~L}) \mu \mathrm{m} \mathrm{L}=$ Measurement Length (mm)				(0.8+0.015L) $\mu \mathrm{m} \quad \mathrm{L}=$ Measurement Length (mm)			
		$\mathrm{Z1}$ axis (detector unit)	$\pm(1.2+\|2 H\| / 100) \mu \mathrm{m} \quad \mathrm{H}=$ Measurement height from the horizontal position (mm)							
	C4000	X axis	$(0.8+0.01 \mathrm{~L}) \mu \mathrm{m} \quad \mathrm{L}=$ Measurement Length (mm)				(0.8+0.015L) $\mu \mathrm{m} \quad \mathrm{L}=$ Measurement Length (mm)			
		21 axis (detector unit)	$\pm(0.8+\|2 \mathrm{H}\| / 100) \mu \mathrm{m} \quad \mathrm{H}=$ Measurement height from the horizontal position (mm)							
X-axis inclination angle			$\pm 45^{\circ}$							
Z2-axis (column) travel range			300 mm	500 mm		700 mm	300 mm	500 mm		700 mm
Base size (W×D)			$600 \times 450 \mathrm{~mm}$		$1000 \times 450 \mathrm{~mm}$		$600 \times 450 \mathrm{~mm}$		$1000 \times 450 \mathrm{~mm}$	
Base material			Granite							

Note: While the appearance of the natural stone measuring table varies according to the source, the high stability for which this material is known can always be relied upon.

FORMTRACER Avant D3000/4000 Series
SERIES 525 - Surface Texture Measuring Instruments

(Detector for surface roughness measurement attaching example, Inclined drive unit, with monitor arm)
(Detector for form/contour measurement attaching example, Inclined drive unit, with monitor arm)

Large sized base models and high-column models are added to the line-up.

SPECIFICATIONS

Surface roughness measurement

Measuring range	X axis		100 mm		200 mm
	Z1 axis	$800 \mu \mathrm{~m}, 80 \mu \mathrm{~m}, 8 \mu \mathrm{~m}$			
Straightness (when the X axis is horizontal)		(0.05+0.001L) $\mu \mathrm{m}$	$\mathrm{L}=$ Measurement Length (mm)	(0.1+0.002L) $\mu \mathrm{m}$	= Mea

Contour measurement

Common specifications

X-axis inclination angle	$\pm 45^{\circ}$					
Z2-axis (column) travel range	300 mm	500 mm	700 mm	300 mm	500 mm	700 mm
Base size (W×D)	$600 \times 450 \mathrm{~mm}$		$1000 \times 450 \mathrm{~mm}$	$600 \times 450 \mathrm{~mm}$		$1000 \times 450 \mathrm{~mm}$
Base material	Granite					

Note: While the appearance of the natural stone measuring table varies according to the source, the high stability for which this material is known can always be relied upon.
Mitutoyo

MeasurLink ${ }^{\circ}$ ENABLED Data Management Software by Mitutoyo

- CS-3300 Series are highly functional and user-friendly surface texture measuring systems with innovative design features. They enable simultaneous measurement of both surface roughness and contour without changing the detector.
- Large sized base models and high-column models are newly added to the line-up.
- Equipped with a wide range and high resolution Z1-axis detector.
- CS-3300 Series comes with the inclined drive unit as standard, making approach to the target surface and measurement of large workpieces much easier.
- Equipped with an operability focused, new style remote box. The new part program key strongly supports manual part-programming
- High throughput is achieved thanks to high drive speed (X axis: Max. $80 \mathrm{~mm} / \mathrm{s}, \mathrm{Z2}$ axis: Max. $30 \mathrm{~mm} / \mathrm{s}$.
- All connecting cables are contained within the measuring instrument to eliminate any inconvenience during measurement.
- The Z1-axis detector is equipped with a built-in anti-collision safety device.

Refer to the FORMTRACER CS-3300 Series Brochure (E15029) for more details.

CS-3300 Series
SERIES 525 - Surface Texture Measuring Instruments

Inclinable drive unit

Detector sliding mechanism

Connecting cables are contained within the measuring instrument.

SPECIFICATIONS

Note: While the appearance of the natural stone measuring table varies according to the source, the high stability for which this material is known can always be relied upon.

Formtracer Extreme

SV-C4500CNC/SV-C4500CNC HYBRID TYPE1
 SERIES 525 - CNC Surface Roughness and Contour Measuring Systems

SV-C4500CNC SPECIFICATIONS

Model No.			SV-C4500CNC
X1 axis (Drive unit)		Measuring range	200 mm
		Resolution	$0.05 \mu \mathrm{~m}$
		Scale type	Reflective-type linear encoder
	Contour	Straightness	$2 \mu \mathrm{~m} / 200 \mathrm{~mm}$
		Accuracy ($20^{\circ} \mathrm{C}$)	$\pm(0.8+4 \mathrm{~L} / 200) \mu \mathrm{m}$ L: Measuring length (mm)
	Surface roughness	Straightness	$0.5 \mu \mathrm{~m} / 200 \mathrm{~mm}$
Z1 axis (Detector)	Contour	Measuring range	$60 \mathrm{~mm}(\pm 30 \mathrm{~mm}$ from the horizontal)
		Resolution	$0.02 \mu \mathrm{~m}$
		Scale type	Arc
		Accuracy ($20^{\circ} \mathrm{C}$)	$\pm(0.8+\mid 2 \mathrm{H} / / 100) \mu \mathrm{m}$ H : Measuring height from horizontal position (mm)
	Surface roughness	Measuring range	$800 \mu \mathrm{~m}, 80 \mu \mathrm{~m}, 8 \mu \mathrm{~m}$
		Resolution	$0.01 \mu \mathrm{~m}, 0.001 \mu \mathrm{~m}, 0.0001 \mu \mathrm{~m}$
$\begin{aligned} & \hline 22 \text { axis } \\ & \text { (Column) } \\ & \hline \end{aligned}$		Drive range	Specification is selectable from 300 mm or 500 mm .
		Resolution	$0.05 \mu \mathrm{~m}$

Note: While the appearance of the natural stone measuring table varies according to the source, the high stability for which this material is known can always be relied upon.
SV-C4500CNC HYBRID TYPE1 SPECIFICATIONS

Model No.			SV-C4500CNC HYBRID TYPE1
X1 axis (Drive unit)		Measuring range	200 mm
		Resolution	$0.05 \mu \mathrm{~m}$
		Scale type	Reflective-type linear encoder
	Contour	Straightness ($20^{\circ} \mathrm{C}$)	$2 \mu \mathrm{~m} / 200 \mathrm{~mm}$
		Accuracy	$\pm(0.8+4 \mathrm{~L} / 200) \mu \mathrm{m}$ L: Measuring length (mm)
	Surface roughness	Straightness	$0.5 \mu \mathrm{~m} / 200 \mathrm{~mm}$
	Non-contact type	Straightness	$0.5 \mu \mathrm{~m} / 200 \mathrm{~mm}$
		Accuracy	$\pm(0.8+4 \mathrm{~L} / 200) \mu \mathrm{mL}$: Measuring length (mm)
Y axis		Measuring range	200 mm
		Resolution	$0.05 \mu \mathrm{~m}$
		Maximum table loading	20 kg
Z1 axis	Contour	Measuring range	60 mm ($\pm 30 \mathrm{~mm}$ from the horizontal)
		Resolution	$0.02 \mu \mathrm{~m}$
		Scale type	Arc
		Accuracy ($20{ }^{\circ} \mathrm{C}$)	$\pm(0.8+\mid 2 \mathrm{H} / / 100) \mu \mathrm{m}$ H : Measuring height from horizontal position (mm)
	Surface roughness	Measuring range	$800 \mu \mathrm{~m}, 80 \mu \mathrm{~m}, 8 \mu \mathrm{~m}$
		Resolution	$0.01 \mu \mathrm{~m}, 0.001 \mu \mathrm{~m}, 0.0001 \mu \mathrm{~m}$
	Non-contact type detector CPS2525*	Measuring range	1.2 mm
		Resolution	25 nm
	Non-contact type detector CPS0517*	Measuring range	0.1 mm
		Resolution	5 nm
Z2 axis		Drive range	500 mm
		Resolution	$0.05 \mu \mathrm{~m}$

* Select either CPS2525 or CPS0517

Note: While the appearance of the natural stone measuring table varies according to the source, the high stability for which this material is known can always be relied upon.

SV-C4500CNC

- High-accuracy stylus type CNC Surface Roughness/Contour Measuring System that allows measurement of surface roughness and form/contour with one unit through detector replacement.
- For models with the a axis, it is possible to perform continuous measurement over horizontal and inclined surfaces by powertilting the X1 axis. In addition, automatic measuring force adjustment function of Z1-axis detector for contour measurement enables automatic measurement with constant measuring force even with the X1-axis tilted.
- For models with the Y-axis table, it is possible to expand the measuring range for multiple workpieces through positioning in the Y-axis direction.
- Since the Z1-axis detector incorporates an anti-collision safety device, the machine will automatically stop if the detector touches a workpiece or jig.
- Optional external control function (Ext I/O) through bidirectional communication (RS232 C) with the PLC (programmable logic controller) is available.

SV-C4500CNC HYBRID TYPE1

- CNC Surface Roughness/Contour Measuring System equipped with a non-contact type detector as well as a contact type surface roughness contour measuring detector.
- Equipped with the Y-axis table, it is possible to expand the measuring range for multiple workpieces through positioning in the Y -axis direction.
- Since the Z1-axis detector incorporates an anti-collision safety device, the machine will automatically stop if the detector touches a workpiece or jig.
- Optional external control function (Ext //O) through bidirectional communication (RS232C) with the PLC (programmable logic controller) is available.

Formtracer Extreme
CS-5000CNC/CS-H5000CNC
SERIES 525 - CNC Surface Roughness and Contour Measuring Systems System that allows batch measurement of surface roughness and form/contour.

- The X1 and Z2 axes have maximum drive speeds of $40 \mathrm{~mm} / \mathrm{s}$ and $200 \mathrm{~mm} / \mathrm{s}$, respectively. This permits high-speed positioning that can potentially result in a large increase in the throughput of multiple-profile/multipleworkpiece measurement tasks.
- The high resolution linear encoder is incorporated in the X1 and Z1 axes so that high resolution is achieved and batch measurement of form/ contour and surface roughness can be made.
- The active control method is employed for the Z1-axis detector to implement a wide-range measurement capability wherein the variation in dynamic measuring force is restricted.
- Since the Z1-axis detector incorporates an anti-collision safety device, the detector unit will automatically stop if it touches a workpiece or fixture
- For models with the a axis, it is possible to perform continuous measurement over horizontal and inclined surfaces by powertilting the X1 axis. (CS-5000CNC only)
- For models with the Y-axis table, it is possible to expand the measuring range for multiple workpieces through positioning in the Y-axis direction.
- Optional external control function (Ext I/O) through bidirectional communication (RS$232 C$) with the PLC (programmable logic controller) is available.
SPECIFICATIONS

Model No.			CS-5000CNC	CS-H5000CNC
X1 axis	Measuring range		200 mm	
	Resolution		$0.005 \mu \mathrm{~m}$	
	Scale type		Transmission-type linear encoder	
	Drive speed	CNC mode	Max. $40 \mathrm{~mm} / \mathrm{s}$	
		Joystick mode	0 to $40 \mathrm{~mm} / \mathrm{s}$	
	Measuring speed		$0.02,0.05,0.1,0.2 \mathrm{~mm} / \mathrm{s}$ (surface roughness), $0.02,0.05,0.1,0.2,0.5,1.0,2.0 \mathrm{~mm} / \mathrm{s}$ (form/contour)	
	Measuring direction		Forward/backward	
	Straightness	with standard stylus	$(0.1+0.0015 \mathrm{~L}) \mu \mathrm{m} \quad \mathrm{L}$: traverse length (mm)	(0.05+0.0003L) $\mu \mathrm{m}$ L: traverse length (mm)
		with 2X-long stylus	$(0.2+0.0015 \mathrm{~L}) \mu \mathrm{m} \quad \mathrm{L}$: traverse length (mm)	$(0.1+0.0015 \mathrm{~L}) \mu \mathrm{m} \quad \mathrm{L}$: traverse length (mm)
	Accuracy ($20^{\circ} \mathrm{C}$)		$\pm(0.3+0.002 \mathrm{~L}) \mu \mathrm{m} \quad \mathrm{L}$: traverse length (mm)	$\pm(0.16+0.001 \mathrm{~L}) \mu \mathrm{m} \quad \mathrm{L}$: traverse length (mm)
a axis	Inclination range		-45° (CWW), $+10^{\circ}$ (CW)	-
Z1 axis (Detector)	Measuring range	with standard stylus	(12 mm	
		with 2 X -long stylus	24 mm	
	Resolution	with standard stylus	$0.0008 \mu \mathrm{~m}$	
		with 2 X -long stylus	$0.0016 \mu \mathrm{~m}$	
	Vertical movement of the stylus		Arc motion	
	Scale type		Transmission-type linear encoder	
	Accuracy ($20^{\circ} \mathrm{C}$)		$\pm(0.3+\mid 0.02 \mathrm{H}) \mu \mathrm{m} \mathrm{H}$: probing height (mm)	$\pm(0.07+\|0.02 \mathrm{H}\|) \mu \mathrm{m} \mathrm{H}$: probing height (mm)
	Measuring force	with standard stylus	4 mN (Fixed)	
		with 2 X -long stylus	0.75 mN (Fixed)	
	Traceable angle		Ascent: 60°, Descent: 60° (Depends on the surface texture.)	
	Stylus tip shape	Standard stylus	Tip radius: $5 \mu \mathrm{~m}$, Tip angle: 40°, Diamond	
		Standard ball stylus	Tip ball radius: 0.25 mm , Sapphire	
		2X-long stylus	Tip radius: $5 \mu \mathrm{~m}$, Tip angle: 40°, Diamond	
		2X-long stylus	-	Tip radius: $2 \mu \mathrm{~m}$, Tip angle: 60°, Diamond tip
		2X-long ball stylus	Tip ball radius: 0.25 mm , Sapphire	
	Face of stylus		Downward	
Z2 axis (Column)	Travel range	Z2 axis (column, type S)	300 mm	
		Z2 axis (column, type H)	500 mm	
	Resolution		$0.05 \mu \mathrm{~m}$	
	Scale type		Reflective-type linear encoder	
	Drive speed	CNC mode	Max. $200 \mathrm{~mm} / \mathrm{s}$	
		Joystick mode	0 to $50 \mathrm{~mm} / \mathrm{s}$	
Base	Base size (W×D)		$750 \times 600 \mathrm{~mm}$	
	Base material		Granite	

Note: While the appearance of the natural stone base varies according to the source, the high stability for which this material is known can always be relied upon.

Surface Roughness/Contour Analysis Program FORMTRACEPAK

- Editing measurement procedures

The items displayed in the measurement procedure window can be directly modified. You can, for example, perform new analyses by modifying the evaluation setup or roughness standard.

- Operation messaging

The operation message window for explaining the next step is incorporated.

- Measurement control

To make only a single measurement, you can create a part program in the single mode. To measure multiple workpieces of an identical shape, you can use the teaching mode. Since you can embed the entire flow, from making measurement to printing a report, into a part program, you can efficiently make measurements, analyze data, and output a report. A function is also provided that enables you to insert comments accompanied with photographs at desired timings, enabling you to embed the roles described in a measurement procedure document that specifies important points such as work settings.
To make immediate measurements, you can use the pull-down menu to easily select and call up the desired operating procedure.

- Versatile graphics windowing for data and analysis

Tab-selection graphics window

Just select a tab to display the measurement data required, such as contour, roughness, or tolerancing results.

Dividing the screen into two or four windows

The screen can be divided into two, or four, windows for the convenient display of measurement data (for contour and roughness), analysis results, and contour tolerancing data, as required.

Displaying the results in the graphics window

 You can paste the graphics obtained from measurements, as well as measurement values (including pass/fail results) and an analysis graph, into the graphics window. This enables you to check the graphics and measurement results at a glance using the graphics window alone.- FORMTRACEPAK functions offer total support for controlling the measurement system, surface roughness analysis, contour analysis, contour tolerancing, and inspection report creation.

- Online help functions

Online help that can be viewed any time is incorporated into the software. In addition to index and keyword searches, a status-saving help button, which displays menus and Windows help with a click of the mouse, is provided.

- Multiple language support (18 languages)

You can switch the language to be used in the measurement, analysis, and layout windows. After measurements have been made, you can switch to another language and create a report in that language. This function can be used worldwide.

Contour measurement - Contour analysis

A wide variety of commands, which form the basic elements for analysis, are provided, including those for points (10 types), lines (6 types) and circles (6 types). A rich set of commands that combine these elements to calculate angles, pitches and distances as well as performing contour tolerancing and design value generation are also provided as standard features. These functions, combined with the function that enables you to customize the calculation command buttons by hiding less frequently used commands, help you to tailor the window according to the user's environment.

- Contour-tolerancing as a standard feature
- Design value generation
- Data combination
- Simple pitch calculation

- Button-editing function

You can hide buttons that are not used frequently. For example, you can choose to display only those buttons that are used frequently and increase the size of the displayed graphics window, thereby customizing the window to suit your needs.

- Simple statistical commands

You can perform statistical calculations of roughness parameters and contour analysis results without using a separate program such as Excel.

Surface roughness measurement - Surface roughness analysis

FORMTRACEPAK can perform surface roughness analyses that conform to various standards such as ISO, JIS, ANSI and VDA. For comparing measurement values with the tolerance limits, you can use the 16% rule or the maximum value rule. Furthermore, since FORMTRACEPAK comes with parameter calculation functions as well as a rich set of graphic analysis functions, it can be widely utilized for everything from routine quality control to R\&D applications. It also includes many other functions such as the function for eliminating (compensating) shapes, such as slopes and radiused surfaces (R-surfaces), and data deletion.

- Micro contour analysis
- Simple input using drawing symbols
- Multiple-point measurement
- Analysis using multiple-point measurements
- Reference length dialog box
- Analysis condition modification with preview
- R-surface automatic measurement

Refer to the FORMTRACEPAK Brochure (E15018) for more details.

Quick Guide to Precision Measuring Instruments

Surftest (Surface Roughness Testers)

ISO 4287:1997 Geometrical Product Specifications(GPS) - Surface Texture: Profile method- Terms, definitions, and surface texture parameters IS0 4288: 1996 Geometrical Product Specifications (GPS) - Surface Texture: Profile method- Rules and procedures for the assessment of surface texture 150 3274: 1996 Geometrical Product Specifications(GPS) -Surface Texture: Profile method- Nominal characteristics of contact (stylus) instruments 150 11562: 1996 Geometrical Product Specifications (GPS)-Surface texture: Profile method-Metrological characteristics of phase correct filters

Elements of Contact Type Surface Roughness Measuring Instruments

 unless otherwise specified.

Static Measuring Force

Nominal radius of curvature of stylus tip: $\mu \mathrm{m}$	Static measuring force at the mean position of stylus: mN	Tolerance on static maeasuring force variations: $\mathrm{mN} / \mu \mathrm{m}$
2	0.75	0.035
5	$0.75(4.0)$	0.2
10		0.2

*The maximum value of static measuring force at the average position of s stylus is to be
4.0 mN for a probe with a special structure including repilaceable stylus.
Metrological Characterization of Phase Correct Filters
A profile filter is a phase-correct filter without phase delay (cause of profile distortion dependent on wavelength).
The weight function of a phase-correct filter shows a normal (Gaussian) distribution in which the amplitude transmission is 50% at the cutoff wavelength

Data Processing Flow

Relationship between Cutoff Value and Stylus Tip Radius
The following table lists the relationship between the roughness profile cutoff

λc mm	$\lambda \mathrm{s}$ $\mu \mathrm{m}$	$\lambda \mathrm{c} / \lambda \mathrm{s}$ mm	Maximum $r_{\text {tip }}$ $\mu \mathrm{m}$	Maximum sampling length $\mu \mathrm{m}$
0.08	2.5	30	2	0.5
0.25	2.5	100	2	0.5
0.8	2.5	300	$2^{\circ 1}$	0.5
2.5	8	300	$5^{\circ 2}$	1.5
8	25	300	$10^{\circ 2}$	5

Surface Profiles

Primary Profile
Profile obtained from the measured profile by applying a low-pass filter

Roughness Profile
Profile obtained from the primary profile by suppressing the longer wavelength components using a high-pass filter of cutoff value $\lambda \mathrm{c}$.

男

Waviness Profile
Profile obtained by applying a band-pass filter to the primary profile to remove the longer wavelengths above λf and the shorter wavelengths below λc.

Roughness sampling length for non-periodic profiles ISO 4288: 1996 (III B 0633: 2001) Table 1: Sampling lengths for aperiodic profile roughness parameters ($R \mathrm{a}, \mathrm{Rq}, R \mathrm{sk}, R \mathrm{ku}, R \Delta \mathrm{q}$), material ratio curve, probability density function, and related parameters

$R \mathrm{a}$ $\mu \mathrm{m}$	Sampling length $/ \mathrm{r}$ mm	Evaluation length m mm
$(0.006)<R \mathrm{am} 0.02$	0.08	0.4
$0.02<R a 0.1$		
$0.1<R a \leq 2$	0.25	1.25
$2<R a 10$	0.8	4.8
$10<R a \leq 80$	8.5	12.5

Table 2: Sampling lengths for aperiodic profile roughness
parameters ($R \mathrm{z}, R \mathrm{v}, R \mathrm{p}, R \mathrm{c}, R \mathrm{t}$)

$\begin{gathered} R \mathrm{z} \\ R \mathrm{z} 1 \text { max. } \\ \mu \mathrm{m} \end{gathered}$	Sampling length $/ \mathrm{r}$ mm	Evaluation length /n mm
(0.025) <Rz, Rz1 max. ≤ 0.1	0.08	0.4
$0.1<R z, R z 1$ max. ≤ 0.5	0.25	1.25
$0.5<R z, R z 1$ max. ≤ 10	0.8	4
$10<R \mathrm{z}, R \mathrm{z}$ 1 max. ≤ 50	2.5	12.5
$50<R z, R z 1$ max.≤ 200	8	40

Table 3: Sampling lengths for measurement of periodic roughness profile roughness parameters and periodic or aperiodic profile parameter Rsm

Procedure for determining a sampling length if it is not specified

Amplitude Parameters (peak and valley)
Maximum peak height of the primary profile $P \mathrm{p}$ Maximum peak height of the roughness profile $R \mathrm{p}$ Maximum peak height of the waviness profile $W \mathrm{p}$
Largest profile peak height $Z \mathrm{p}$ within a sampling length

Maximum valley depth of the primary profile $P \mathrm{~V}$ Maximum valley depth of the roughness profile $R \mathrm{v}$ Maximum valley depth of the waviness profile W_{v} Largest profile valley depth Zv within a sampling length

Maximum height of the primary profile $P \mathrm{z}$ Maximum height of the roughness profile Rz Maximum height of the waviness profile W_{Z} Sum of height of the largest profile peak height Zp and the largest profile valley depth $Z v$ within a sampling length

In the old IS and ISO 4287-1: 1984, Rz was used to indicate the In the old JI and ISO 4287-1:1984, Rz was used to indicate the differences between results obtained according to the existing and old standards are not always negligibly small. (Be sure to check whether the drawing instructions conform to existing or old standards.)

Mean height of the primary profile elements $P \mathrm{c}$ Mean height of the roughness profile elements $R \mathrm{c}$ Mean height of the waviness profile elements $W \mathrm{c}$ Mean value of the profile element heights Zt within a sampling length

Total height of the primary profile $P \mathrm{t}$ Total height of the roughness profile $R \mathrm{t}$ Total height of the waviness profile W t
Sum of the height of the largest profile peak height $Z \mathrm{p}$ and the largest profile valley depth $Z \mathrm{v}$ within the evaluation length

Amplitude Parameters (average of ordinates) Arithmetical mean deviation of the primary profile P a Arithmetical mean deviation of the roughness profile $R a$ Arithmetical mean deviation of the waviness profile W a Arithmetic mean of the absolute ordinate values $Z(x)$ within a sampling length

$$
P \mathrm{a}, R \mathrm{a}, W \mathrm{a}=\frac{1}{1} \int_{0}^{1}|z(x)| \mathrm{dx}
$$

with l as $l \mathrm{p}$, $l \mathrm{r}$, or $/ \mathrm{w}$ according to the case.

Root mean square deviation of the primary profile $P q$ Root mean square deviation of the roughness profile $R \mathrm{q}$ Root mean square deviation of the waviness profile $W \mathrm{q}$ Root mean square value of the ordinate values $Z(x)$ within a sampling length

$$
P \mathrm{q}, R \mathrm{q}, W \mathrm{q}=\sqrt{\frac{1}{1} \int_{0}^{1} Z^{2}(\mathrm{x}) \mathrm{dx}}
$$

with las $/ \mathrm{l}, \mathrm{lr}$, or $/ \mathrm{w}$ according to the case.

Skewness of the primary profile P sk
Skewness of the roughness profile R sk
Skewness of the waviness profile W sk
Quotient of the mean cube value of the ordinate values $Z(x)$ and the cube of $P \mathrm{q}, R \mathrm{q}$, or $W \mathrm{q}$ respectively, within a sampling length

$$
R \mathrm{sk}=\frac{1}{R q^{3}}\left[\frac{1}{\operatorname{lr}} \int_{0}^{1 t} z^{3}(x) d x\right]
$$

The above equation defines R sk. P sk and W sk are defined in a similar manner. P sk, $R \mathrm{sk}$, and W sk are measures of the asymmetry of the probability density function of the ordinate values.

Kurtosis of the primary profile P ku Kurtosis of the roughness profile $R \mathrm{ku}$ Kurtosis of the waviness profile $W \mathrm{ku}$
Quotient of the mean quartic value of the ordinate values $Z(x)$ and the fourth power of $P \mathrm{q}, R \mathrm{q}$, or $W \mathrm{q}$ respectively, within a sampling length

$$
R \mathrm{ku}=\frac{1}{R q^{4}}\left[\frac{1}{\ln } \int_{0}^{\mathrm{t}} \mathrm{Z}^{4}(x) d x\right]
$$

The above equation defines $R \mathrm{ku} . P \mathrm{ku}$ and $W \mathrm{ku}$ are defined in a similar manner. $P \mathrm{ku}, R \mathrm{ku}$, and $W \mathrm{ku}$ are measures of the sharpness of the probability density function of the ordinate values.

Spacing Parameters
Mean width of the primary profile elements PSm Mean width of the roughness profile elements $R S m$ Mean width of the waviness profile elements WSm Mean value of the profile element widths $X \mathrm{~s}$ within a sampling length

$$
P S \mathrm{~m}, R S \mathrm{~m}, W S \mathrm{~m}=\frac{1}{\mathrm{~m}} \sum_{\mathrm{i}=1}^{\mathrm{m}} X_{S_{\mathrm{i}}}
$$

Peak count number based on the primary profile elements $P P \mathrm{c}$ Peak count number based on the roughness profile elements $R P \mathrm{c}$ Peak count number based on the waviness profile elements $W P \mathrm{c}$

$$
R P_{\mathrm{c}}=\frac{1}{R S \mathrm{~m}}
$$

Hybrid Parameters
Root mean square slope of the primary profile $P \Delta q$ Root mean square slope of the roughness profile $R \Delta \mathrm{q}$ Root mean square slope of the waviness profile $W \Delta q$ Root mean square value of the ordinate slope $\mathrm{d} Z / \mathrm{d} X$ within a sampling length

Curves, Probability Density Function, and Related Parameters
Material ratio curve of the profile (Abbott-Firestone curve) Curve representing the material ratio of the profile as a function of section level C

Material ratio of the primary profile $P \mathrm{mr}(\mathrm{c})$ Material ratio of the roughness profile $R \mathrm{mr}$ (c) Material ratio of the waviness profile Wmr (c) Ratio of the material length of the profile elements $M 1$ (c) at a given level c to the evaluation length

$$
P \mathrm{mr}(\mathrm{c}), R \mathrm{mr}(\mathrm{c}), W \mathrm{mr}(\mathrm{c})=\frac{M(\mathrm{c})}{\mathrm{ln}}
$$

Section height difference of the primary profile $P \delta c$ Section height difference of the roughness profile $R \delta \mathrm{c}$ Section height difference of the waviness profile $W \delta$ c Vertical distance between two section levels of a given material ratio

Relative material ratio of the primary profile $P \mathrm{mr}$ Relative material ratio of the roughness profile $R \mathrm{mr}$ Relative material ratio of the waviness profile $W \mathrm{mr}$ Material ratio determined at a profile section level $R \delta \mathrm{c}$ related to the reference section level co

$$
\begin{aligned}
& P \mathrm{mr}, R \mathrm{mr}, W \mathrm{mr}=P \mathrm{mr}\left(\mathrm{c}_{1}\right), R \mathrm{mr}\left(\mathrm{c}_{1}\right), W \mathrm{mr}\left(\mathrm{c}_{1}\right) \\
& \text { where } \quad \begin{array}{l}
\mathrm{c}_{1}=\mathrm{c}_{0}-R \delta \mathrm{c}(P \delta \mathrm{c}, W \delta \mathrm{c}) \\
\mathrm{c}_{0}=\mathrm{c}(P \mathrm{~m} 0, R \mathrm{mr} 0, W \mathrm{mr} 0)
\end{array}
\end{aligned}
$$

Probability density function
(profile height amplitude distribution curve)
Sample probability density function of the ordinate $Z(x)$ within the evaluation length

JIS Specific Parameters
Ten-point height of irregularities, $\mathrm{Rz}_{\text {IIS }}$
Sum of the absolute mean height of the five highest profile peaks Sum of the absolute mean height of the five highest profile peaks and the absolute mean depth of the five deepest profile valleys,
measured from the mean line within the sampling length of a roughness profile. This profile is obtained from the primary profile using a phase-correct band-pass filter with cutoff values of Ic and ls.

Symbol	Used profile
Rzussz2	Surface profile as measured
Rzuss4	Roughness profile derived from the primary profile using a phase-correct high-pass filter

Arithmetic mean deviation of the profile $R \mathrm{a}_{75}$ Arithmetic mean of the absolute values of the profile deviations from the mean line within the sampling length of the roughness profile (75%). This profile is obtained from a measurement profile using an analog high-pass fiter with an attenuation factor of $12 \mathrm{db} /$ octave and a cutoff value of $\lambda \mathrm{c}$.

$$
R_{\mathrm{a}_{55}}=\frac{1}{\ln } \int^{\ln }|z(x)| d x
$$

Quick Guide to Precision Measuring Instruments

Traceable Angle

The maximum angle at which a stylus can trace upwards or downwards along the contour of a workpiece, in the stylus travel direction, is referred to as the traceable angle. A one-sided sharp stylus with a tip angle of 12° (as in the above figure) can trace a maximum 77° of up slope and a maximum 87° of down slope. For a conical stylus (30° cone), the traceable angle is smaller. An up slope with an angle of 77° or less overall may actually include an angle of more than 77° due to the effect of surface roughness. Surface roughness also affects the measuring force.

Compensating for Stylus Tip Radius

A recorded profile represents the locus of the center of the ball tip rolling on a workpiece surface. (A typical radius is 0.025 mm .) Obviously this is not the same as the true surface profile so, in order to obtain an accurate profile record, it is necessary to compensate for the effect of the tip radius through data processing.

If a profile is read from the recorder through a template or scale, it is necessary to compensate for the stylus tip radius beforehand according to the applied measurement magnification.

Compensating for Arm Rotation

When the stylus traces through a circular-arc, error arises in the X-axis direction of the recorded profile. Possible methods for compensating for this effect are as follows:

1) Mechanical compensation
2) Electrical compensation

3) Software processing. To measure a workpiece contour that involves a large displacement in the vertical direction with high accuracy, one of these compensation methods needs to be implemented.

Accuracy

As the detector units of the X-and Z-axes incorporate scales, the magnification accuracy is displayed not as a percentage but as the linear displacement accuracy for each axis.

Overload Safety Cutout

If an excessive force (overload) is exerted on the stylus tip due, perhaps, to the tip encountering a too-steep slope on a workpiece feature, or a burr, for example, a safety device automatically stops operation and sounds an alarm buzzer. This type of instrument is commonly equipped with separate safety devices for the tracing direction (X axis) load and vertical direction (Z axis) load.

Circular-Arc/Linear Tracing

The locus traced by the stylus tip during vertical stylus movement can be a circular arc or a straight line. Ensuring a straight-line locus entails complex mechanics, while in the case of a circular-arc locus, if the amplitude of stylus displacement is large in the vertical direction, an error (δ) in the recorded profile in the horizontal direction arises. (See figure at lower left)

Z-axis Measurement Methods

Though the X-axis measurement method commonly adopted is by means of a digital scale, the Z-axis measurement divides into analog methods (using a differential transformer, for example) and digital scale methods.
Analog methods vary in Z-axis resolution depending on the measurement magnification and measuring range. Digital scale methods have fixed resolution.
Generally, a digital scale method provides higher accuracy than an analog method.

Contour analysis methods

You can analyze the contour with one of the following two methods after completing the measurement operation.

Data processing section and analysis program

The measured contour is input into the data processing section in real time and a dedicated program performs the analysis using the mouse and/or keyboard. The angle, radius, step, pitch and other data are directly displayed as numerical values. Analysis combining coordinate systems can be easily performed. The graph that goes through stylus radius correction is output to the printer as the recorded profile.

Tolerancing with Design Data

Measured workpiece contour data can be compared with design data in terms of actual and designed shapes rather than just analysis of individual dimensions. In this technique each deviation of the measured contour from the intended contour is displayed and recorded. Also, data from one workpiece example can be processed so as to become the master design data to which other workpieces are compared. This function is particularly useful when the shape of a section greatly affects product performance, or when its shape has an influence on the relationship between mating or assembled parts.

Best-fitting

If there is a standard for surface profile data, tolerancing with design data is performed according to the standard. If there is no standard, or if tolerancing only with shape is desired, best-fitting between design data and measurement data can be performed.

The best-fit processing algorithm searches for deviations between both sets of data and derives a coordinate system in which the sum of squares of the deviations is a minimum when the measured data is overlaid on the design data.

Data Combination

Conventionally, if tracing a complete contour is prevented by stylus traceable-angle restrictions then it has to be divided into several sections that are then measured and evaluated separately. This function avoids this undesirable situation by combining the separate sections into one contour by overlaying common elements (lines, points) onto each other. With this function the complete contour can be displayed and various analyses performed in the usual way.

Measurement Examples

Aspheric lens contour

Internal gear teeth

Male thread form

Inner/outer ring contour of a bearing

Female thread form

Gage contour

